Estimating xenobiotic half-lives in humans from rat data: influence of log P.

نویسندگان

  • J G Sarver
  • D White
  • P Erhardt
  • K Bachmann
چکیده

The nature of empirical allometric expressions relating dispositional and kinetic parameters for a given xenobiotic across multiple mammalian species is well known. It has also been demonstrated that a simple allometric relationship may be used to predict kinetic parameters for humans based merely on data for multiple xenobiotics from rats. We decided to explore reasons for the variance in the data arising from the latter method. We were particularly interested in learning whether any physicochemical characteristics of xenobiotics might account for outlying data points (i.e., poor prediction of human half-life from rat half-life). We have explored the influence of lipid solubility as reflected by a xenobiotic's log P value because adipose tissue comprises a significantly larger percentage of total body weight in humans than in rats. We used half-life data from the literature for 127 xenobiotics. A data subset of 102 xenobiotics for which we were able to find estimates of log P values, including several with extremely large log P values, was also analyzed. First and second order models, including and excluding log P, were compared. The simplest of these models can be recast as the familiar allometric relationship having the form Y = a(Xb). The remaining models can be seen as extensions of this relationship. Our results suggest that incorporation of log P into the prediction of xenobiotic half-life in humans from rat half-life data is important only for xenobiotics with extremely large log P values such as dioxins and polychlorinated biphenyls. Moreover, a second order model in logarithm of rat half-life accommodates all data points very well, without specifically accounting for log P values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Individual Pharmacokinetic Model Framework for Interpreting Time Trends of Persistent Chemicals in Human Populations: Application to a Postban Situation

BACKGROUND Human milk and blood are monitored to detect time trends of persistent organic pollutants (POPs) in humans. It is current practice to use log-linear regression to fit time series of averaged cross-sectional biomonitoring data, here referred to as cross-sectional trend data (CSTD). OBJECTIVE The goals of our study are to clarify the interpretation of half-lives derived from fitting ...

متن کامل

Scaling basic toxicokinetic parameters from rat to man.

Scaling of the quantified dispositional parameters of xenobiotics from animals to man is of interest from the standpoint of toxicology (e.g., poisoning and risk assessment). Scaling is also important from the standpoint of therapeutics because it represents a strategy for predicting first-use-in-human doses in clinical trials of investigational new drugs. Current strategies for scaling either d...

متن کامل

Estimating half-lives for pesticide dissipation from plants.

Pesticide risk and impact assessment models critically rely on and are sensitive to information describing dissipation from plants. Despite recent progress, experimental data are not available for all relevant pesticide-plant combinations, and currently no model predicting plant dissipation accounts for the influence of substance properties, plant characteristics, temperature, and study conditi...

متن کامل

Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in human plasma.

Estimation of xenobiotic kinetics in humans frequently relies upon extrapolation from experimental data generated in animals. In an accompanying paper, we have presented a unique, generic, physiologically based pharmacokinetic model and described its application to the prediction of rat plasma pharmacokinetics from in vitro data alone. Here we demonstrate the application of the same model, para...

متن کامل

The effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzymes in selenium and/or iodine deficient rats

Objective(s): Particularly in developing countries, selenium and/or iodine deficiencies are encountered and use of pesticides in agriculture are not well-controlled. Fenvalerate is a pyrethroid insectide used in agriculture and has applications against a wide range of pests. This study was designed to evaluate the effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzyme act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 105  شماره 

صفحات  -

تاریخ انتشار 1997